
Blockchains Cannot Rely on Honesty
Jakub Sliwinski & Roger Wattenhofer

ABSTRACT
This work proposes a novel blockchain with an incentive scheme

such that all players following the protocol constitute a strict, strong

Nash equilibrium. In other words, following the protocol is guaran-

teed to be the optimal strategy. Our blockchain takes the form of a

directed acyclic graph, resulting in improvements with respect to

throughput and speed.

More importantly, for our blockchain to function, it is not ex-

pected that the miners conform to some presupposed protocol in

the interest of the system’s operability. Instead, our system works

if miners act selfishly, trying to get the maximum possible rewards,

with no consideration for the overall health of the blockchain.

1 INTRODUCTION
A decade ago, Satoshi Nakamoto presented his now famous Bitcoin

protocol [10]. Nakamoto assembled some stimulating techniques

in an attractive package, such that the result was more than just

the sum of its parts.

The Bitcoin blockchain promises to order and store transactions

meticulously, despite being anarchistic, “without a trusted party".

Literally anybody can participate, as long as “honest nodes col-

lectively control more CPU power than any cooperating group of

attacker nodes." [10]

In Section 6 of his seminal paper, Nakamoto argues that it is

rational to be honest thanks to block rewards and fees. However,

it turns out that Nakamoto was overly optimistic, and rational

does not imply honest. If a miner has a fast network and/or a

significant fraction of the hashing power, the miner may be better

off by not being honest, holding blocks back instead of immediately

broadcasting them to the network [2].

If the material costs and payoffs of mining are low, one can argue

that the majority of miners will want to remain honest. After all,

if too many miners stop conforming to the protocol, the system

will break down. However, the costs and payoffs of participation

vary over time, and majority of miners remaining altruistic is never

guaranteed. Strategies outperforming the protocol may or may not

be discovered for different blockchain incentive designs. However,

as long as it is not proven that no such sophisticated strategy exists,

the system remains in jeopardy.

1.1 Blockchain Game
Typical blockchains, such as Bitcoin’s, take the form of a rooted tree

of blocks. During the execution of the protocol, players continually

create new blocks that are appended to the tree as new leaves.

Creating blocks is computationally intensive, so that the network

creates a specific number of blocks in a given time period, such as

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.),
May 2020, Auckland, New Zealand
© 2020 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

https://doi.org/doi

one block every ten minutes on average in Bitcoin. One path of

blocks, such as the longest path, is distinguished as the main chain

and keeps being extended by addition of new leaves. The network’s

participants want to create blocks that remain incorporated into the

main chain, as these blocks are rewarded. Ideally, the leaves would

be added in sequence, each appended to the previous one. However,

by chance or malice, it is inevitable that some leaves are appended

to the same block and create a "fork". Then, it is uncertain which one

will end up extending themain chain. According to typical solutions,

one of the leaves is eventually chosen as the one extending the chain,

and the creator of the other one misses out on block rewards. This

approach introduces some unwanted incentives in the potential to

punish other players. Even worse, some factors such as network

connectivity start to play a role and might influence the behaviour

of players.

1.2 Our Contribution
We propose a blockchain design with an incentive scheme guaran-

teeing that deviating from the protocol strictly reduces the overall

share and amount of rewards. All players following the protocol

constitute a strict, strong Nash equilibrium. Our approach is to

ensure that creating a fork will always be detrimental to all parties

involved. Our design allows blocks to reference more than one

previous block; in other words, the blocks form a directed acyclic

graph (DAG). We prove that miners creating a new block have an

incentive to always reference all previously unreferenced blocks.

Hence, all blocks are recorded in the blockchain and no blocks are

discarded.

2 MODEL AND PRELIMINARIES
2.1 Rounds
Communication between players (miners) is divided into rounds.

Each round consists of each player: 1) computing (mining) new

blocks, 2) sending newly found blocks to all other players, 3) re-

ceiving all messages before the next round commences. The length

of one round can be thought of as the network delay.

2.2 Players
To avoid confusion in how we build on previous work, we stick

to the usual terminology of honest players and an adversary. The
players that conform to the protocol are called honest. A coalition of

all parties that considers deviating from the protocol is controlled by

an adversary. We gradually introduce new elements, and eventually

show that by deviating from the protocol, the adversary reduces its

share and amount of rewards. Hence, rational becomes synonymous

with honest.

The adversary constitutes a minority as described in Section 2.5,

otherwise the adversary can take over the blockchain by simply

ignoring all actions by honest players.

The adversary is also more powerful than honest players. First

of all, we consider the adversary as a single entity. The adversary

https://doi.org/doi

AAMAS’20, May 2020, Auckland, New Zealand Jakub Sliwinski & Roger Wattenhofer

does not have to send messages to itself, so the mine/send/receive

order within a round does not apply to the adversary. Moreover,

the adversary gets to see all messages sent by honest players in

round r before deciding its strategy of round r . After seeing the

honest messages, the adversary is not allowed to create new blocks

again in this round. Moreover, the adversary controls the order that

messages arrive to each player.

2.3 Blocks
Blocks are the messages that the players exchange, and a basic unit

of the blockchain. Formally, a block B is a tuple B = ⟨TB ,RB , c,η⟩,
where:

• TB is the content of the block

• RB is a set of references (hashes) to previously existing

blocks, i.e. RB = {h(B1), . . . ,h(Bm)}
• c is a public key of the player that created the block

• η is the proof-of-work nonce, i.e., a number such that for a

hash function h and difficulty parameter D, h(B) < D holds.

The content of the block TB depends on the application. In gen-

eral, TB contains some information that the block creator wishes

to record in the blockchain for all participants to see. We consider

blockchain properties independently of the content TB . The content

TB is briefly discussed in Section 5.4.

The creator of B holds the private key corresponding to c . The
creator can later use the key to withdraw the reward for creating B.
The amount of reward is automatically determined by the protocol,

and at the core of our contribution in Section 5.

2.4 DAG
RB includes at least one hash of a previous block, which might be

the hash of a special genesis block ⟨∅, ∅,⊥, 0⟩. The hash function is

pre-image resistant, i.e. it is infeasible to find a message given its

hash. If a block B′ includes a reference to another block B, B′ must

include h(B), and hence has to be created after B.
A directed cycle of blocks is impossible, as the block which was

created earliest in such a cycle cannot include a hash to the other

blocks that were created later. Consequently, the blocks always

form a directed acyclic graph (DAG) with the genesis block as the

only root (block without any parent) of this DAG.

2.5 Mining
Creating a new block is achieved by varying η to find a hash value

that is smaller than the difficulty parameterD, i.e.,h(⟨TB ,RB , c,η⟩) <
D. Creating blocks in this way is called mining. Blocks are called
honest if mined by an honest player, or adversarial if mined by the

adversary.

By varying D, the protocol designer can set the probability of

mining a block with a single hashing query arbitrarily. The difficulty

D could also change during the execution of the protocol to adjust

the rate at which blocks are created. For simplicity and clarity we

leave the details of changing D to future work, and assume D to be

constant.

The honest players control the computational power to mine

α blocks in expectation in one round. The computational power

of the adversary is such that the expected number of blocks the

adversary can mine in one round is equal to β . The adversary

does not experience a delay in communication with itself, so the

adversary might mine multiple blocks forming a chain in one round.

Assumptions. The following assumptions are made in order to

satisfy the prerequisites of Lemma 4.2 from [5], which links our

work to traditional blockchains. Intuitively, Lemma 4.2 states that

a traditional blockchain works with respect to the most basic re-

quirement. If one believes a blockchain to function in this basic

way under some other assumptions, those assumptions can be used

instead, and our results would apply in the same way.

Because of the delay in communication, the effective computa-

tional power of the honest players corresponds to the probability

α ′ ≈ αe−α [5] that in a given round exactly one honest player

mines a block.

(1) The honest players have more mining power: α ′ ≥ β(1 + ϵ)
for a constant ϵ > 0.

(2) The difficulty D is set such that the expected number of

blocks mined within one round is less than one: α + β < 1.

3 THE PROTOCOL
The protocol by which the honest players construct the block DAG

is quite natural:

• Every round, attempt to mine new blocks.

• Reference in RB all unreferenced blocks observed.

• Broadcast newly mined blocks to all other players immedi-

ately.
1

4 THE BLOCK DAG
Each player stores the DAG formed by all blocks known to the

player. For each blockB, one of the referenced blocksBi is the parent
Bi = P(B), and B is the child of P(B). The parent is automatically

determined based on the DAG structure. The parent-child edges

induce the parent tree from the DAG.

The players use Algorithm 1 by [15] to select a chain of blocks

going from the genesis block to a leaf in the parent tree. The selected

chain represents the current state of the blockchain; it is called the

main chain. The main chain of a player changes from round to

round. Players adopt main chains that may be different from each

other, depending on the blocks observed.

Algorithm 1:Main chain selection algorithm.

Input: a block tree T
Output: block B - the end of the selected chain

1 B ← genesis // start at the genesis block.

2 while B has a child in T do
3 B ← heaviest child of B

// continue with the child of B

// with most nodes in its subtree.

4 return B

Let past(B) denote the set of blocks reachable by references from
B and the DAG formed by those blocks. The protocol dictates refer-

encing all blocks that otherwise would not be included in past(B).
1
Similarly to other works in the area we assume the network supports a message

diffusion mechanism that delivers messages in each round, similarly to the Bitcoin’s

network.

Blockchains Cannot Rely on Honesty AAMAS’20, May 2020, Auckland, New Zealand

Then, by creating a new block B, the creator communicates only

being aware of blocks in past(B). Based on past(B), we determine

P(B) as the end of the main chain (Algorithm 1) of the DAG of the

player when creating a new block B [6].

Definition 4.1. A block B is the child of the block returned by

Algorithm 1 in the parent tree of past(B).

Lemma 4.2 by [5], encapsulates the notion that a blockchain

(represented by the parent tree in our description) functions prop-

erly with respect to a basic requirement. Intuitively, it states that

from any point in time, the longer one waits, the more probable it

becomes that some honest block mined after that point in time is

contained in a main chain of each honest player. The probability of

the contrary decreases exponentially with time.

Lemma 4.2 (Fresh Block Lemma). For all r ,∆ ∈ N, with proba-
bility 1 − e−Ω(∆), there exists a block mined by an honest player on
or after round r that is contained in the main chain of each honest
player on and after round r + ∆.

Lemma 4.2 can be proved with respect to other chain selection

rules, for instance picking the child with the longest chain instead

of the heaviest child as in Algorithm 1. Our work can be applied

equally well using such chain selection rules.

If the protocol designer has control over some factor x , probabil-

ity of the form e−Ω(x) can be set arbitrarily lowwith relatively small

variation of x . Probability of the form e−Ω(x) is called negligible.
2

4.1 Block Order
We will now explain, how all blocks reachable by references will be

ordered, following the algorithm of [6]. According to the resulting

order, the contents of blocks that fall outside of the main chain can

be processed, as if all blocks formed one chain.

Definition 4.3. Each player processes blocks in the orderOrder(B),
where B is the last block of the main chain.

Algorithm 2: Order(B): a total order of blocks in past(B).
Input: a block B
Output: a total order of all blocks in past(B)

1 On the first invocation, visited(·) is initialized to false for
each block.

2 if visited(B) then return ∅
3 visited(B) ← true // Blocks are visited

depth-first.

4 if B = genesis then return (B)
5 O ← Order(P(B))

// Get the order of P(B) recursively.

6 for i = 1, . . . ,m do
7 O ← O .append(Order(Bi))

// Append newly included blocks.

8 O ← O .append(B) // Append B at the end.

9 return O

2
Probabilities of this form are often disregarded completely in proofs [13].

Note the order of executing the FOR loop in line 6 of the Al-

gorithm 2 has to be the same for each player for them to receive

consistent orders of blocks. Algorithm 2 processes Bi ’s in the order

of inclusion in RB , but the order could be alphabetical or induced

by the chain selection rule.

Based on lines numbered 5-8 we can state Corollary 4.4.

Corollary 4.4. Order(B) extends Order(P(B)) by appending all
newly reachable blocks not included yet in Order(P(B)).

Lemma 4.5. Any announced block becomes referenced by a block
contained in the main chain of any honest player after ∆ rounds with
probability 1 − e−Ω(∆).

Proof. Suppose a block B is announced at round r . By Lemma

4.2, some honest block Amined in the following ∆ rounds is con-

tained in the main chains adopted by honest players after round

r + ∆. Since A is honest, B ∈ past(A). □

Corollary 4.6. All announced blocks are eventually referenced
in the main chains of honest players.

4.2 Stale Blocks
We now introduce a mechanism to distinguish blocks that were

announced within a reasonable number of rounds from blocks

that where withheld by the miner for an extended period of time.

Such withheld blocks are called stale. Honest miners broadcast

their blocks immediately, so stale blocks can be attributed to the

adversary. In our incentive scheme, stale blocks will not receive any

rewards and will also be ignored for the purpose of determining

other block rewards. Thus we ensure that it is pointless for the

adversary to wait too long before broadcasting its blocks.

The basic definition of whether a block A is stale is termed with

respect to some other block B. We are only interested in blocks B
that form the main chain. When the main chain is extended, the sets

of stale and non-stale blocks are preserved (and extended). Hence,

stale-ness is determined by the eventual main chain.

Definition 4.7. Given a block B, the set sets of blocks SB is com-

puted by Algorithm 3. Then, S̄B = past(B) \ SB . If A ∈ SB we call A
stale.

The constant p of Algorithm 3 is chosen by the protocol designer.

Intuitively, given a main chain ending with block B that references

another blockA, we judgeA by the distance one needs to backtrack

along the main chain to find an ancestor ofA. If the distance exceeds
p, A is stale.

We call P i (B) the ith ancestor of B and B is a descendant of P i (B).3

By LCA(B1,B2) we denote the block that is an ancestor of B1 and

an ancestor of B2, such that none of its children are simultaneously

an ancestor of B1 and an ancestor of B2.

For blocks A and B, D(A,B) is the distance between A and B in

the parent tree, i.e. D(A, P(A)) = 1, D(A, P(P(A))) = 2, etc.

Corollary 4.8 shows that when the main chain is extended, the

stale-ness of previously seen blocks is preserved.

Corollary 4.8. If A ∈ past(P(B)) then A ∈ SB ⇐⇒ A ∈ SP (B).

3
Note that ancestors and descendants are defined based on the parent tree and not

based on other non-parent references building up the DAG.

AAMAS’20, May 2020, Auckland, New Zealand Jakub Sliwinski & Roger Wattenhofer

Algorithm 3: Compute SB .

Input: a block B
Output: a set SB

1 if B = genesis then return ∅
2 S ← SP (B) // Copy SP (B) for blocks in past(P(B)).

3 for A ∈ past(B) \ past(P(B)) do
4 X = LCA(A,B)
5 Age = D(X ,B) // age = distance from B to LCA.

6 if Age > p then
7 S = S ∪ {A}

// A is stale iff age is bigger than p

8 return S

Proof. Line 5 in Algorithm 3 sets SB as the same as SP (B), while
the following FOR loop adds only blocks A < past(P(B)). □

Theorem 4.9 establishes the most important property of stale-

ness. The probability that the adversary can successfully make an

honest block stale decreases exponentially with p, and is negligible.

Theorem 4.9 (Honest Blocks are Not Stale). Let B be an
honest block mined on round r . With probability 1 − e−Ω(p), after
round r + O(p) each honest player H adopts a main chain ending
with a block BH such that B ∈ S̄BH .

Proof. Let ∆ = ⌊
p

2(α+β)(1+ϵ) −
1

2
⌋ = O(p). By Lemma 4.2, with

probability 1 − e−Ω(∆), on and after round r , honest players have
adopted main chains containing a block C mined between rounds

r −∆ and r (or the genesis block if r −∆ < 1). HenceC is an ancestor

of B. By Lemma 4.2, letD be the honest blockmined between rounds

r + 1 and r + ∆ + 1 that honest players adopted in the main chain

on and after round r + ∆ + 1, again with probability 1 − e−Ω(∆). D
is honest and mined after round r , so B ∈ past(D).

Since C was mined on or after round r − ∆, and D was mined

on or before round r + ∆ + 1, D(C,D) is at most the number Y of

blocks mined between rounds r − ∆ and r + ∆ + 1. By the Chernoff

bound:

e−
ϵ2(2(α+β)∆)

3 ≥ Pr[Y ≥ (1 + ϵ)(α + β)(2∆ + 1)] ≥ Pr[Y ≥ p]

Since C is an ancestor of D, C is an ancestor of LCA(B,D), and
D(C,D) ≥ D(LCA(B,D),D). By Algorithm 3:

D(C,D) < p =⇒ B ∈ S̄D .

By union bound, the probability that suchC and D exist and that

B ∈ S̄D is at least equal

1 − 2e−Ω(∆) − e−
ϵ2(2(α+β)∆)

3 = 1 − e−Ω(p).

By Corollary 4.8 and induction, with probability 1 − e−Ω(p), after
round r +∆ all honest players adopt only chains ending with blocks

X such that B ∈ S̄X . □

5 THE REWARD SCHEME
Consider coupling the presented protocol with a reward mechanism

R0
that, intuitively speaking, grants some flat amount b of reward

to all non-stale blocks, and 0 reward to stale blocks. R0
is a special

case of the reward scheme properly defined in Definition 5.3.

Corollary 5.1. Under the reward scheme R0, honest players are
rewarded proportionally to the number of blocks they mine, except
with negligible probability.

Proof. By Theorem 4.9 honest blocks are not stale, so honest

miners receive rewards linear in the number of blocks they mined.

The adversary might only decrease its rewards by producing stale

blocks, otherwise the adversary is rewarded in the same way. □

Note thatR0
achieves the same fairness guarantee as the Fruitchains

protocol to be discussed in Section 6.3 — honest blocks are incorpo-

rated into the blockchain as non-stale, while withholding a block

for too long makes it lose its reward potential. Both protocols rely

on the honest majority of participants to guarantee this fairness.

The Fruitchains protocol relies critically on merged-mining [11]

(also called 2-for-1 POW [3]) fruits and blocks. While fruits are

mined for the rewards, blocks are supposed to be mined entirely

voluntarily with negligible extra cost. The reward schemeR0
avoids

this complication.

Granting flat amount of reward for each non-stale block leaves

a lot of room for deviation that goes unpunished. In the case of the

Fruitchains protocol, mining blocks does not contribute rewards in

any way. Hence, any deviation with respect to mining blocks (which

decide the order of contents) is free of any cost for the adversary.

In the context of cryptocurrency transactions, a rational adversary

should always attempt to double-spend.

In the case of R0
, the adversary can refrain from referencing

some recent blocks, and suffer no penalty. However, attempting to

manipulate the order of older blocks would render the adversary’s

new block stale, and hence penalize. Thus, we view even the base

case R0
of the presented reward scheme as a strict improvement

over the Fruitchains protocol.

5.1 Penalizing Deviations
Central to our design is the approach to treating forks i.e. blocks that

“compete" by referencing the same parent block and not each other.

Typically, blockchain schemes specify that one of the blocks even-

tually ’loses’ and the creator misses out on some rewards, hence

discouraging the competition. However, there are ways of manipu-

lating this process to one’s advantage, and the uncertainty of which

block will win the competition introduces unneeded incentives. We

penalize all parties involved in creating a fork.

The conflict set introduced in Definition 5.2 contains the blocks

that “compete" with a given block. Stale blocks are excluded, as we

ignore them for the purpose of computing rewards. Like stale-ness,

the conflict set is defined with respect to some other blockA. Again,
we are only interested in blocks A that form the main chain, and

the conflict set indicated by the eventual main chain.

The conflict set of a non-stale block B contains all non-stale

blocks X that are not reachable by references from B, and B is not

reachable by references from X .

Definition 5.2 (Conflict Set). For blocks A and B where B ∈ S̄A,

XA(B) = {X : X ∈ past(A) ∧X ∈ S̄A ∧X < past(B) ∧ B < past(X)}.

Intuitively, the scheme we propose awards every block some

amount of reward b decreased by a penalty c multiplied by the

size of the conflict set. The ultimate purpose of the properties we

Blockchains Cannot Rely on Honesty AAMAS’20, May 2020, Auckland, New Zealand

Figure 1: An example of a conflict set. The gray blocks con-
stitute the conflict set of the blue block. The dashed arrows
are references and the solid arrows are parent references.

establish is to make sure that rational miners want to minimize the

conflict set of the blocks they create, following the protocol as a

consequence.

Definition 5.3 (Rewards). A reward scheme Rc ,b is such that

given the main chain ending with a blockA, each block B ∈ past(A)
is granted R

c ,b
A (B) amount of reward:

R
c ,b
A (B) =

{
0, if B ∈ SA or D(A, LCA(A,B)) ≤ 2p.

b − c |XA(B)|, otherwise.

We write Rc for Rc ,b if b is clear from context, or just R if c is
clear from context.

In our reward scheme, the reward associated with a given block

are decreased linearly with the size of the block’s conflict set. We

need to ensure that no block reward is negative, otherwise the

reward scheme would break down. Lemma 5.4 shows that it is only

possible for the conflict set to reach certain size; the probability

that the conflict set of a block is bigger than linear in p is negligible.

Intuitively, it is due to the fact that stale blocks cannot be part of a

conflict set, and after enough time has passed from broadcasting

some block B, new blocks either have to reference B or are stale.

As a consequence, we establish in Corollary 5.5 that the rewards

are non-negative.

Lemma 5.4. Let x ≥ p and B be a block. The probability that any
honest player adopts a main chain ending with a block A such that
|XA(B)| > xp is e−Ω(x).

Proof. Let r be the roundBwas announced. Let Pi , i ∈ {1, . . . , 2p}
(respectively Fi , i ∈ {1, . . . ,p}), be an honest block mined between

rounds r − xi
4
−1 and r − x (i−1)

4
−1 (resp. r + x (i−1)

4
+1 and r + xi

4
+1)

contained in the main chain of every honest player on and after

round r +
xp
4
+ 1; by Lemma 4.2 and union bound such blocks exist

with probability 1 − e−Ω(x).
Since F1 is honest, B ∈ past(F1). By Algorithm 3, if Pp < past(B),

then B ∈ SF1
and XA(B) remains undefined for honest players.

Otherwise, assume Pp ∈ past(B).
Let Z be a block such that Z < past(B) ∧ B < past(Z). Since

Z < past(B), Z < past(Pp). By Algorithm 3, either P2p ∈ past(Z), or
Z becomes stale in the main chains of honest players from round

r −
x (p−1)

4
− 1 on. Assume P2p ∈ past(Z), and hence Z is mined on

or after round r −
2xp

4
− 1.

Since B < past(Z), F1 < past(Z). Then, either Z is announced

before round r +
xp
4
+ 1, or by Algorithm 3, Z becomes stale in the

main chains of honest players afterwards. Assume Z is announced

before round r +
xp
4
+ 1.

Therefore, Z ∈ XA(B) implies that Z is mined between rounds

r −
2xp

4
− 1 and r +

xp
4
+ 1. Let Y be the number of blocks mined

between these rounds. By Chernoff bound:

Pr[Y ≥ xp] ≤ Pr[Y ≥
4

3

(α + β)(
3xp

4

+ 2)] = e−Ω(x).

Note the bound is appliable to anymain chain of an honest player

before round r +
xp
4
+ 1 as well. The claim follows from the union

bound. □

Corollary 5.5 (Rewards Are Non-Negative). Let B be a block.
The probability that any honest player adopts a main chain ending

with a block A such that Rc ,bA (B) < 0 is e−Ω(
b
cp).

Proof. Follows directly from Lemma 5.4. □

The conflict set of a block is determined based on the main chain.

At some point, the reward needs to be determined and stay fixed.

Lemma 5.6 shows that if the main chain has grown far enough

from the block B, the new blocks A appended to the chain will not

modify the conflict set of B.

Lemma 5.6. IfD(P(A), LCA(P(A),B)) > 2p thenXA(B) = XP (A)(B)

Proof. From Definition 5.2, XP (A)(B) ⊆ XA(B). Suppose for

contradiction ∃Y : Y ∈ XA(B) \ XP (A)(B). From Definition 5.2, B ∈

S̄A, therefore B ∈ past(P i (A)). Hence, P i (A) < past(Y). Since Y <
past(P(A)), D(A, LCA(A,Y)) > p and Y ∈ SA, a contradiction. □

The rewards in Definition 5.3 are only assigned as non-zero to

blocks B such that D(A, LCA(A,B)) > 2p, where A is the block at

the end of the main chain. By Corollary 5.7, these non-zero rewards

are not modified by the blocks extending the main chain and remain

fixed.

Corollary 5.7 (Rewards Are Final).

∀B ∈ past(A) : RP (A)(B) , 0 =⇒ RA(B) = RP (A)(B).

Proof. R
c ,b
A (B) is non-zero only if D(A, LCA(A,B)) > 2p. The

corollary follows from Lemmas 4.8 and 5.6 and induction. □

The properties we have established so far culminate in Theorem

5.8.

Theorem 5.8. Deviating from the protocol reduces the adversary’s
rewards and its proportion of rewards Rc ,b , except with negligible
probability.

Proof. Honest blocks are not-stale, except with negligible prob-

ability (Theorem 4.9). Block rewards are final and non-negative,

except with negligible probability (Corollaries 5.7 and 5.5). Hence,

eventual value of Rc ,b (B) for honest blocks B depends only on

|XA(B)|. Since Y ∈ XA(Z) ⇐⇒ Z ∈ XA(Y), by increasing |XA(B)|
of an honest block the adversary can only reduce the rewards

of honest players (by c |XA(B)|) if the adversary forfeits the same

amount. Since the adversary constitutes a minority, its proportion

of rewards decreases as well.

AAMAS’20, May 2020, Auckland, New Zealand Jakub Sliwinski & Roger Wattenhofer

The adversary can also produce stale blocks, forfeiting the oth-

erwise non-negative reward, while not changing the rewards of

honest players.

Not referencing some known honest block directly increases

|XA(B)|. Withholding a block might only prevent some honest

player from referencing it, thus increasing |XA(B)|. Hence, any
strategy effectively different from the protocol increases |XA(B)| of
produced blocks, thus decreasing the amount and share of rewards

of the adversary. □

5.2 Nash Equilibria
Discussing Nash equilibria with respect to the received rewards is

problematic, since the game only continues as long as the blockchain

functions. Hence, a strategy profile wherein a majority of miners

do not follow the protocol might be meaningless, as it would often

imply the lack of any main chain consistent among players, and

lack of any globally defined rewards. Since we are only assured the

blockchain operation continues if a majority of miners follows the

protocol, we restrict our attention to strategy profiles where that is

the case.

Theorem 5.8 shows that minimizing the conflict set of mined

blocks is in the interest of the miner. Following the protocol i.e. not

withholding blocks and referencing all other blocks is the unique

strategy minimizing the conflict set of created blocks. There are

negligibly improbable scenarios in which a player can increase its

share of rewards by deviating, for example rendering some blocks

of other players stale. However, committing to a strategy different

from the protocol is associated with concrete punishments. Hence,

by Theorem 5.8 the protocol designer can set the constants p, c,b,
so that all players following the protocol constitute a strict, strong

Nash equilibrium. In other words, all agents and all (minority)

coalitions of agents strictly prefer to follow the protocol to any

alternative strategy.

Corollary 5.9. All players following the protocol constitute a
strict, strong Nash equilibrium.

However, there exist other Nash equilibria. Consider the scenario

described in Example 5.10.

Example 5.10. Four blockchain players with equal hashing power
each adopt the following strategies:

• Player 1 and 2: Follow the protocol.

• Player 3: Do not broadcast new blocks in the first round,

otherwise follow the protocol.

• Player 4: If you receive three blocks of other players (child

blocks of the genesis block) at the beginning of the second

round, then induce penalties for yourself and other players

as much as possible forever. Otherwise follow the protocol.

Since Player 3 refrains from broadcasting blocks in the first round,

Player 4 can never receive three blocks of other players in the second

round, and thus the strategy of Player 4 is identical to following

the protocol.

However, Player 3 deviates from the protocol. With some con-

stant probability Players 1 and 2 broadcast a block each in the first

round, so if Player 3 broadcast a block in the first round, Player

4 could receive three blocks. Then, this action would change the

behaviour of Player 4 to cause penalties to herself and Player 3.

Hence, the strategy profile is a Nash equilibrium.

The Nash equilibrium presented in Example 5.10 is based on a

player threatening to induce penalties for other players by suffering

penalties herself. Intuitively speaking, we suggest all Nash equi-

libria where some player does not follow the protocol are of this

nature, but we do not formalize this concept. However, if the adver-

sary wishes to spend resources solely to influence the behaviour of

rational miners, there are always ways to achieve this outside the

scope of any reward scheme, such as bribery (see Section 6.4).

5.3 Hurting Other Players
When designing a reward scheme, it might be seen as fair if each

honest player is rewarded irrespectively of the strategies of other

players. Such fairness principle is enjoyed by the Fruitchains proto-

col and our reward scheme R0
. However, those schemes inevitably

trivialize some aspect of the game and leave potential for deviation

that goes unpunished. A relaxation of this principle is stated in

Corollary 5.11 based on Theorem 5.8 and its proof.

Corollary 5.11. Under the reward scheme Rc ,b , by deviating
from the protocol the adversary can only reduce the rewards of other
players by forfeiting at least the same amount.

We observe that the property stated in Corollary 5.11 prevents

the existence of selfish mining strategies such as those concerning

Bitcoin and other traditional blockchains (see Section 6.1). Such

strategies pose a threat since they enable forfeiting some rewards

to penalize other players to an even bigger extent.

5.4 Block Content and Transaction Fees
Depending on the use of the blockchain, miners can be rewarded

for including contents in their blocks in various ways. Typically, a

transaction fee is awarded to only one miner that first includes the

transaction in a block. As a result, the order of processing blocks

is important for determining who collects the fees, as it indicates

which block is the first. Problematic incentives are introduced with

respect to manipulating the order.

Any particular fee-sharing scheme cannot be enforced, because

the fee might be disguised as a regular transaction output paid to

the miner directly. This can benefit both the transaction issuer and

the miner, incentivizing the behavior.
4

To be incentive compatible, it is not necessary that the fees are

spread proportionally. What we want is that the miners never have

an incentive to omit a reference to another block. As all blocks are

assumed to eventually be included in the blockchain, it is enough to

ensure that sufficiently small changes of the linearized order of the

blocks have no effect on the miner rewards. This can be achieved

by allowing multiple blocks to claim the same inclusion of contents,

and having the fee be shared among the including blocks equally.

In other words, any player who wishes to include a transaction

can do so within a certain window, without an effect on their incen-

tives to reference other blocks. Crucially, sending the fee directly to

4
If we disregard this vulnerability, the same fee-sharing approach as employed by the

Fruitchains protocol can be applied to our work.

Blockchains Cannot Rely on Honesty AAMAS’20, May 2020, Auckland, New Zealand

a miner as a transaction output removes the incentive for other min-

ers to include the transaction, as well as the incentive to manipulate

the place of the including block in the order.

The point of such a change would be to separate transaction in-

clusion from referencing blocks. Transaction inclusion is a complex

game in itself, similar to the game studied by [6].

6 RELATEDWORK
Themodel of round-based communication in the setting of blockchain

was introduced in [3]. This paper formalizes and studies the security

of Bitcoin.

6.1 Selfish Mining
Selfish mining is a branch of research studying a type of strate-

gies increasing the proportion of rewards obtained by players in a

Bitcoin-like system. Selfish mining exemplifies concerns stemming

from the lack of proven incentive compatibility. Selfish mining was

first described formally in [2], although the idea had been discussed

earlier [9]. Selfish mining strategies have been improved [14] and

generalized [12].

6.2 DAG
The way we order all blocks for the purpose of processing them

was introduced in [6]. The authors consider an incentive scheme

to accompany this modification. Their design relies on altruism,

as referring extra blocks has no benefit, other than to creators of

referred blocks. Hence, rational miners would never refer them,

possibly degenerating the DAG to a blockchain similar to Bitcoin’s.

Some other shortcomings are discussed by the authors.

The authors of [7] contribute an experimental implementation of

the directed acyclic graph structure and ordering of [6], in particular

its advantages with respect to the throughput.

6.3 Fruitchains
Fruitchains [13] is probably the closest work to ours. Fruitchains is a

protocol that gives a guarantee that miners are rewarded somewhat

proportionally to their mining power. The objective might seem

similar to ours, but there are fundamental differences. To achieve

fairness, similarly to existing solutions, the Fruitchains protocol

requires the majority of miners to cooperate without an incentive.

In other words, in order to contribute to the common good of the

system, players must put in altruistic work.

In contrast, we strive for a protocol such that any miner simply

trying to maximize their share or amount of rewards will inadver-

tently conform to the protocol.

The Fruitchains protocol rewards mining of “fruits", which are a

kind of blocks that do not contribute to the security of the system.

The Fruitchains protocol relies on merged-mining
5
also called 2-

for-1 PoW in [3]. In addition to fruits, the miners can mine “normal"

blocks (containing the fruits) with minimal extra effort and for no

reward. The functioning and security of the system depends only

on mining normal blocks according to the protocol.

5
One of the first mentions of merged-mining as used today is [11], although the general

idea was mentioned as early as [4].

Miners are asked to reference the fruits of other miners, benefit-

ing others but not themselves, similarly to [inclusive]. The proba-

bility of not doing so having any effect is negligible, since majority

of the miners are still assumed to reference said fruits.

The resulting system-wide cooperation guarantees fairness, in-

evitably removing many game-theoretic aspects from the resulting

game. In particular, misbehaviour does not result in any punishment.

It is common to analyze blockchain designs with respect to the ex-

pected cost of a double-spend attempt. In the case of Fruitchains,

while the probability of double-spends being successful is similar to

previous designs, the cost of attempting to double-spend is nullified.

As a result, any miner might attempt to double-spend constantly at

no cost, which we view as a serious jeopardy to the system.

In the absence of punishments, we also argue that not conform-

ing to the protocol is often simpler. Since transaction fees are shared

between miners, including transactions might be seen as pointless

altogether. Mining only fruits with dummy, zero-fee transactions,

while not including the fruits of others (or not mining for blocks al-

together), would relieve the miner of a vast majority of the network

communication.

Another game-theoretic issue of the Fruitchains protocol is that

while it prescribes sharing of the transaction fees, miners might ask

transaction issuers to disguise the fee as an additional transaction

output, locking it to a specific miner, potentially benefiting both

parties and disrupting the protocol.

As argued in Section 5, the reward scheme R0
is an improvement

over Fruitchains in the same vein, achieving the same result while

avoiding some of the complications.

In contrast to Fruitchains protocol, the approach of reward

schemes Rc ,b is to employ purely economic forces, clearly incen-

tivizing desired behaviour while making sure that deviations are

punished.

6.4 Bribery
Recently, there have been works highlighting the problems of

bribery, e.g. [1, 8]. A bribing attacker might temporarily convince

some otherwise honest players (either using threats or incentives)

to join the adversary. Consequently, the adversary might gain more

than half of the computational power, taking over the system tem-

porarily.

Such bribery might be completely external to the reward scheme

itself, for example the adversary might program a smart contract

(perhaps in another blockchain) that provably offers rewards to

miners that show they deviate from the protocol. Hence, no per-

missionless blockchain can be safe against this type of attack.

7 CONCLUSIONS
Mining is a risky business, as block rewards must pay for hardware

investments, energy and other operation costs. At the time of this

writing, the Bitcoin mining turnover alone is worth over $5 billion

per year, which is without a doubt a serious market. Miners in this

market are professionals, who will make sure that their investments

pay off. Yet, many believe that a majority of miners will follow the

protocol altruistically, in the best interests of everybody, the “greater

good".

AAMAS’20, May 2020, Auckland, New Zealand Jakub Sliwinski & Roger Wattenhofer

We argue that assuming altruistic miners is not strong enough to

be a foundation for a reliable protocol. In this work, we introduced

a blockchain incentive scheme such that following the protocol is

guaranteed to be the optimal strategy.

We showed that our design is tolerant to miners acting rationally,

trying to get the maximum possible rewards, with no consideration

for the overall health of the blockchain.

To the best of our knowledge, our design is the first to provably

allow for rational mining. Nakamoto [10] needed “honest nodes

collectively control more CPU power than any cooperating group

of attacker nodes". With our design it is possible to turn the word

honest into the word rational.

REFERENCES
[1] Joseph Bonneau. 2016. Why Buy When You Can Rent? - Bribery Attacks on

Bitcoin-Style Consensus. In Financial Cryptography and Data Security - FC 2016
International Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados,
February 26, 2016, Revised Selected Papers. 19–26.

[2] Ittay Eyal and Emin Gün Sirer. 2014. Majority Is Not Enough: Bitcoin Mining Is

Vulnerable. In 18th International Conference on Financial Cryptography and Data
Security. 436–454.

[3] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The bitcoin backbone

protocol: Analysis and applications. In 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques. 281–310.

[4] Markus Jakobsson and Ari Juels. 1999. Proofs of work and bread pudding proto-

cols. In Secure Information Networks. 258–272.

[5] Aggelos Kiayias and Georgios Panagiotakos. 2017. On Trees, Chains and Fast

Transactions in the Blockchain. In 5th International Conference on Cryptology
and Information Security in Latin America.

[6] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. 2015. Inclusive Block

Chain Protocols. In 19th International Conference on Financial Cryptography and
Data Security. 528–547.

[7] Chenxing Li, Peilun Li, Wei Xu, Fan Long, and Andrew Chi-Chih Yao. 2018.

Scaling Nakamoto Consensus to Thousands of Transactions per Second. arXiv
preprint arXiv:1805.03870 (2018).

[8] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. 2018. Smart Contracts

for Bribing Miners. In Financial Cryptography and Data Security - FC 2018 Inter-
national Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March
2, 2018, Revised Selected Papers. 3–18.

[9] mtgox. 2010. https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606.

(2010).

[10] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. http:

//bitcoin.org/bitcoin.pdf. (2008).

[11] Satoshi Nakamoto. 2010. https://bitcointalk.org/index.php?topic=1790.

msg28696#msg28696. (2010).

[12] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. 2016. Stubborn

mining: Generalizing selfish mining and combining with an eclipse attack. In 1st
IEEE European Symposium on Security and Privacy.

[13] Rafael Pass and Elaine Shi. 2017. Fruitchains: A Fair Blockchain. In Symposium
on Principles of Distributed Computing. 315–324.

[14] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016. Optimal self-

ish mining strategies in Bitcoin. In 20th International Conference on Financial
Cryptography and Data Security. 515–532.

[15] Yonatan Sompolinsky and Aviv Zohar. 2015. Secure high-rate transaction pro-

cessing in Bitcoin. In 19th International Conference on Financial Cryptography
and Data Security. 507–527.

https://bitcointalk.org/index.php?topic=2227.msg29606#msg29606
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://bitcointalk.org/index.php?topic=1790.msg28696#msg28696
https://bitcointalk.org/index.php?topic=1790.msg28696#msg28696

	Abstract
	1 Introduction
	1.1 Blockchain Game
	1.2 Our Contribution

	2 Model and Preliminaries
	2.1 Rounds
	2.2 Players
	2.3 Blocks
	2.4 DAG
	2.5 Mining

	3 The Protocol
	4 The Block DAG
	4.1 Block Order
	4.2 Stale Blocks

	5 The Reward Scheme
	5.1 Penalizing Deviations
	5.2 Nash Equilibria
	5.3 Hurting Other Players
	5.4 Block Content and Transaction Fees

	6 Related Work
	6.1 Selfish Mining
	6.2 DAG
	6.3 Fruitchains
	6.4 Bribery

	7 Conclusions
	References

